Archive | Probability

A Gentle Introduction to Computational Learning Theory

A Gentle Introduction to Computational Learning Theory

Computational learning theory, or statistical learning theory, refers to mathematical frameworks for quantifying learning tasks and algorithms. These are sub-fields of machine learning that a machine learning practitioner does not need to know in great depth in order to achieve good results on a wide range of problems. Nevertheless, it is a sub-field where having […]

Continue Reading 9
Empirical Probability Density Function for the Bimodal Data Sample

How to Use an Empirical Distribution Function in Python

An empirical distribution function provides a way to model and sample cumulative probabilities for a data sample that does not fit a standard probability distribution. As such, it is sometimes called the empirical cumulative distribution function, or ECDF for short. In this tutorial, you will discover the empirical probability distribution function. After completing this tutorial, […]

Continue Reading 20
A Gentle Introduction to Stochastic in Machine Learning

What Does Stochastic Mean in Machine Learning?

The behavior and performance of many machine learning algorithms are referred to as stochastic. Stochastic refers to a variable process where the outcome involves some randomness and has some uncertainty. It is a mathematical term and is closely related to “randomness” and “probabilistic” and can be contrasted to the idea of “deterministic.” The stochastic nature […]

Continue Reading 26
A Gentle Introduction to Maximum a Posteriori (MAP) for Machine Learning

A Gentle Introduction to Maximum a Posteriori (MAP) for Machine Learning

Density estimation is the problem of estimating the probability distribution for a sample of observations from a problem domain. Typically, estimating the entire distribution is intractable, and instead, we are happy to have the expected value of the distribution, such as the mean or mode. Maximum a Posteriori or MAP for short is a Bayesian-based […]

Continue Reading 11
A Gentle Introduction to Markov Chain Monte Carlo for Probability

A Gentle Introduction to Markov Chain Monte Carlo for Probability

Probabilistic inference involves estimating an expected value or density using a probabilistic model. Often, directly inferring values is not tractable with probabilistic models, and instead, approximation methods must be used. Markov Chain Monte Carlo sampling provides a class of algorithms for systematic random sampling from high-dimensional probability distributions. Unlike Monte Carlo sampling methods that are […]

Continue Reading 15
Histogram Plots of Differently Sized Monte Carlo Samples From the Target Function

A Gentle Introduction to Monte Carlo Sampling for Probability

Monte Carlo methods are a class of techniques for randomly sampling a probability distribution. There are many problem domains where describing or estimating the probability distribution is relatively straightforward, but calculating a desired quantity is intractable. This may be due to many reasons, such as the stochastic nature of the domain or an exponential number […]

Continue Reading 33
Histogram of Dataset Constructed From Two Different Gaussian Processes

A Gentle Introduction to Expectation-Maximization (EM Algorithm)

Maximum likelihood estimation is an approach to density estimation for a dataset by searching across probability distributions and their parameters. It is a general and effective approach that underlies many machine learning algorithms, although it requires that the training dataset is complete, e.g. all relevant interacting random variables are present. Maximum likelihood becomes intractable if […]

Continue Reading 26
Probabilistic Model Selection Measures AIC, BIC, and MDL

Probabilistic Model Selection with AIC, BIC, and MDL

Model selection is the problem of choosing one from among a set of candidate models. It is common to choose a model that performs the best on a hold-out test dataset or to estimate model performance using a resampling technique, such as k-fold cross-validation. An alternative approach to model selection involves using probabilistic statistical measures […]

Continue Reading 64