The gradient descent algorithm is one of the most popular techniques for training deep neural networks. It has many applications in fields such as computer vision, speech recognition, and natural language processing. While the idea of gradient descent has been around for decades, it’s only recently that it’s been applied to applications related to deep […]

## Training a Linear Regression Model in PyTorch

Linear regression is a simple yet powerful technique for predicting the values of variables based on other variables. It is often used for modeling relationships between two or more continuous variables, such as the relationship between income and age, or the relationship between weight and height. Likewise, linear regression can be used to predict continuous […]

## Making Linear Predictions in PyTorch

Linear regression is a statistical technique for estimating the relationship between two variables. A simple example of linear regression is to predict the height of someone based on the square root of the person’s weight (that’s what BMI is based on). To do this, we need to find the slope and intercept of the line. […]

## Loading and Providing Datasets in PyTorch

Structuring the data pipeline in a way that it can be effortlessly linked to your deep learning model is an important aspect of any deep learning-based system. PyTorch packs everything to do just that. While in the previous tutorial, we used simple datasets, we’ll need to work with larger datasets in real world scenarios in […]

## Using Dataset Classes in PyTorch

In machine learning and deep learning problems, a lot of effort goes into preparing the data. Data is usually messy and needs to be preprocessed before it can be used for training a model. If the data is not prepared correctly, the model won’t be able to generalize well. Some of the common steps required […]

## Calculating Derivatives in PyTorch

Derivatives are one of the most fundamental concepts in calculus. They describe how changes in the variable inputs affect the function outputs. The objective of this article is to provide a high-level introduction to calculating derivatives in PyTorch for those who are new to the framework. PyTorch offers a convenient way to calculate derivatives for […]

## Two-Dimensional Tensors in Pytorch

Two-dimensional tensors are analogous to two-dimensional metrics. Like a two-dimensional metric, a two-dimensional tensor also has $n$ number of rows and columns. Let’s take a gray-scale image as an example, which is a two-dimensional matrix of numeric values, commonly known as pixels. Ranging from ‘0’ to ‘255’, each number represents a pixel intensity value. Here, […]

## One-Dimensional Tensors in Pytorch

PyTorch is an open-source deep learning framework based on Python language. It allows you to build, train, and deploy deep learning models, offering a lot of versatility and efficiency. PyTorch is primarily focused on tensor operations while a tensor can be a number, matrix, or a multi-dimensional array. In this tutorial, we will perform some […]

## 365 Data Science courses free until November 21

Sponsored Post The unlimited access initiative presents a risk-free way to break into data science. The online educational platform 365 Data Science launches the #21DaysFREE campaign and provides 100% free unlimited access to all content for three weeks. From November 1 to 21, you can take courses from renowned instructors and earn […]

## Attend the Data Science Symposium 2022, November 8 in Cincinnati

Sponsored Post Attend the Data Science Symposium 2022 on November 8 The Center for Business Analytics at the University of Cincinnati will present its annual Data Science Symposium 2022 on November 8. This all day in-person event will have three featured speakers and two tech talk tracks with four concurrent presentations in each track. The […]