It can be challenging to develop a neural network predictive model for a new dataset. One approach is to first inspect the dataset and develop ideas for what models might work, then explore the learning dynamics of simple models on the dataset, then finally develop and tune a model for the dataset with a robust […]

# Archive | Deep Learning

## Neural Network Models for Combined Classification and Regression

Some prediction problems require predicting both numeric values and a class label for the same input. A simple approach is to develop both regression and classification predictive models on the same data and use the models sequentially. An alternative and often more effective approach is to develop a single neural network model that can predict […]

## Develop a Neural Network for Woods Mammography Dataset

It can be challenging to develop a neural network predictive model for a new dataset. One approach is to first inspect the dataset and develop ideas for what models might work, then explore the learning dynamics of simple models on the dataset, then finally develop and tune a model for the dataset with a robust […]

## Develop a Neural Network for Banknote Authentication

It can be challenging to develop a neural network predictive model for a new dataset. One approach is to first inspect the dataset and develop ideas for what models might work, then explore the learning dynamics of simple models on the dataset, then finally develop and tune a model for the dataset with a robust […]

## How to Update Neural Network Models With More Data

Deep learning neural network models used for predictive modeling may need to be updated. This may be because the data has changed since the model was developed and deployed, or it may be the case that additional labeled data has been made available since the model was developed and it is expected that the additional […]

## Prediction Intervals for Deep Learning Neural Networks

Prediction intervals provide a measure of uncertainty for predictions on regression problems. For example, a 95% prediction interval indicates that 95 out of 100 times, the true value will fall between the lower and upper values of the range. This is different from a simple point prediction that might represent the center of the uncertainty […]

## How to Develop a Neural Net for Predicting Disturbances in the Ionosphere

## Weight Initialization for Deep Learning Neural Networks

Weight initialization is an important design choice when developing deep learning neural network models. Historically, weight initialization involved using small random numbers, although over the last decade, more specific heuristics have been developed that use information, such as the type of activation function that is being used and the number of inputs to the node. […]

## Difference Between Backpropagation and Stochastic Gradient Descent

There is a lot of confusion for beginners around what algorithm is used to train deep learning neural network models. It is common to hear neural networks learn using the “back-propagation of error” algorithm or “stochastic gradient descent.” Sometimes, either of these algorithms is used as a shorthand for how a neural net is fit […]

## How to Develop a Neural Net for Predicting Car Insurance Payout

Developing a neural network predictive model for a new dataset can be challenging. One approach is to first inspect the dataset and develop ideas for what models might work, then explore the learning dynamics of simple models on the dataset, then finally develop and tune a model for the dataset with a robust test harness. […]