Archive | Deep Learning

How to Make Classification and Regression Predictions for Deep Learning Models in Keras

How to Make Predictions with Keras

Once you choose and fit a final deep learning model in Keras, you can use it to make predictions on new data instances. There is some confusion amongst beginners about how exactly to do this. I often see questions such as: How do I make predictions with my model in Keras? In this tutorial, you […]

Continue Reading 219
Why Initialize a Neural Network with Random Weights?

Why Initialize a Neural Network with Random Weights?

The weights of artificial neural networks must be initialized to small random numbers. This is because this is an expectation of the stochastic optimization algorithm used to train the model, called stochastic gradient descent. To understand this approach to problem solving, you must first understand the role of nondeterministic and randomized algorithms as well as […]

Continue Reading 37
Example MNIST images

Image Augmentation for Deep Learning with Keras

Data preparation is required when working with neural networks and deep learning models. Increasingly, data augmentation is also required on more complex object recognition tasks. In this post, you will discover how to use data preparation and data augmentation with your image datasets when developing and evaluating deep learning models in Python with Keras. After […]

Continue Reading 190
Loss function

Loss Functions in TensorFlow

The loss metric is very important for neural networks. As all machine learning models are one optimization problem or another, the loss is the objective function to minimize. In neural networks, the optimization is done with gradient descent and backpropagation. But what are loss functions, and how are they affecting your neural networks? In this […]

Continue Reading 2
kin-shing-lai-7qUtO7iNZ4M-unsplash

Understanding the Design of a Convolutional Neural Network

Convolutional neural networks have been found successful in computer vision applications. Various network architectures are proposed, and they are neither magical nor hard to understand. In this tutorial, you will make sense of the operation of convolutional layers and their role in a larger convolutional neural network. After finishing this tutorial, you will learn: How […]

Continue Reading 0