Archive | Deep Learning

Learning Curves of Cross-Entropy Loss for a Deep Learning Model

TensorFlow 2 Tutorial: Get Started in Deep Learning With tf.keras

Predictive modeling with deep learning is a skill that modern developers need to know. TensorFlow is the premier open-source deep learning framework developed and maintained by Google. Although using TensorFlow directly can be challenging, the modern tf.keras API beings the simplicity and ease of use of Keras to the TensorFlow project. Using tf.keras allows you […]

Continue Reading 41
What is Deep Learning?

What is Deep Learning?

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain called artificial neural networks. If you are just starting out in the field of deep learning or you had some experience with neural networks some time ago, you may be confused. I know I was confused […]

Continue Reading 234
The Three Levels of Deep Learning Competence

3 Levels of Deep Learning Competence

Deep learning is not a magic bullet, but the techniques have shown to be highly effective in a large number of very challenging problem domains. This means that there is a ton of demand by businesses for effective deep learning practitioners. The problem is, how can the average business differentiate between good and bad practitioners? […]

Continue Reading 16
Overview of Course Structure

Practical Deep Learning for Coders (Review)

Practical deep learning is a challenging subject in which to get started. It is often taught in a bottom-up manner, requiring that you first get familiar with linear algebra, calculus, and mathematical optimization before eventually learning the neural network techniques. This can take years, and most of the background theory will not help you to […]

Continue Reading 24
Why Initialize a Neural Network with Random Weights?

Why Initialize a Neural Network with Random Weights?

The weights of artificial neural networks must be initialized to small random numbers. This is because this is an expectation of the stochastic optimization algorithm used to train the model, called stochastic gradient descent. To understand this approach to problem solving, you must first understand the role of nondeterministic and randomized algorithms as well as […]

Continue Reading 19