It is important to both present the expected skill of a machine learning model a well as confidence intervals for that model skill. Confidence intervals provide a range of model skills and a likelihood that the model skill will fall between the ranges when making predictions on new data. For example, a 95% likelihood of […]

## How to Report Classifier Performance with Confidence Intervals

Once you choose a machine learning algorithm for your classification problem, you need to report the performance of the model to stakeholders. This is important so that you can set the expectations for the model on new data. A common mistake is to report the classification accuracy of the model alone. In this post, you […]

## How to Evaluate the Skill of Deep Learning Models

I often see practitioners expressing confusion about how to evaluate a deep learning model. This is often obvious from questions like: What random seed should I use? Do I need a random seed? Why don’t I get the same results on subsequent runs? In this post, you will discover the procedure that you can use […]

## 7 Ways to Handle Large Data Files for Machine Learning

Exploring and applying machine learning algorithms to datasets that are too large to fit into memory is pretty common. This leads to questions like: How do I load my multiple gigabyte data file? Algorithms crash when I try to run my dataset; what should I do? Can you help me with out-of-memory errors? In this […]

## On the Suitability of Long Short-Term Memory Networks for Time Series Forecasting

Long Short-Term Memory (LSTM) is a type of recurrent neural network that can learn the order dependence between items in a sequence. LSTMs have the promise of being able to learn the context required to make predictions in time series forecasting problems, rather than having this context pre-specified and fixed. Given the promise, there is […]

## A Gentle Introduction to Long Short-Term Memory Networks by the Experts

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network capable of learning order dependence in sequence prediction problems. This is a behavior required in complex problem domains like machine translation, speech recognition, and more. LSTMs are a complex area of deep learning. It can be hard to get your hands around what […]

## The Promise of Recurrent Neural Networks for Time Series Forecasting

Recurrent neural networks are a type of neural network that add the explicit handling of order in input observations. This capability suggests that the promise of recurrent neural networks is to learn the temporal context of input sequences in order to make better predictions. That is, that the suite of lagged observations required to make […]

## How to Learn to Add Numbers with seq2seq Recurrent Neural Networks

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) that are capable of learning the relationships between elements in an input sequence. A good demonstration of LSTMs is to learn how to combine multiple terms together using a mathematical operation like a sum and outputting the result of the calculation. A […]

## How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python

Long Short-Term Networks or LSTMs are a popular and powerful type of Recurrent Neural Network, or RNN. They can be quite difficult to configure and apply to arbitrary sequence prediction problems, even with well defined and “easy to use” interfaces like those provided in the Keras deep learning library in Python. One reason for this […]

## How to use Different Batch Sizes when Training and Predicting with LSTMs

Keras uses fast symbolic mathematical libraries as a backend, such as TensorFlow and Theano. A downside of using these libraries is that the shape and size of your data must be defined once up front and held constant regardless of whether you are training your network or making predictions. On sequence prediction problems, it may […]