Sequence classification is a predictive modeling problem where you have some sequence of inputs over space or time and the task is to predict a category for the sequence. What makes this problem difficult is that the sequences can vary in length, be comprised of a very large vocabulary of input symbols and may require […]

## How To Use Classification Machine Learning Algorithms in Weka

Weka makes a large number of classification algorithms available. The large number of machine learning algorithms available is one of the benefits of using the Weka platform to work through your machine learning problems. In this post you will discover how to use 5 top machine learning algorithms in Weka. After reading this post you will […]

## How To Use Regression Machine Learning Algorithms in Weka

Weka has a large number of regression algorithms available on the platform. The large number of machine learning algorithms supported by Weka is one of the biggest benefits of using the platform. In this post you will discover how to use top regression machine learning algorithms in Weka. After reading this post you will know: […]

## Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras

Time series prediction problems are a difficult type of predictive modeling problem. Unlike regression predictive modeling, time series also adds the complexity of a sequence dependence among the input variables. A powerful type of neural network designed to handle sequence dependence are called recurrent neural networks. The Long Short-Term Memory Networks or LSTM network is […]

## How To Estimate A Baseline Performance For Your Machine Learning Models in Weka

It is really important to have a performance baseline on your machine learning problem. It will give you a point of reference to which you can compare all other models that you construct. In this post you will discover how to develop a baseline of performance for a machine learning problem using Weka. After reading […]

## Time Series Prediction With Deep Learning in Keras

Time Series prediction is a difficult problem both to frame and to address with machine learning. In this post you will discover how to develop neural network models for time series prediction in Python using the Keras deep learning library. After reading this post you will know: About the airline passengers univariate time series prediction […]

## How To Estimate The Performance of Machine Learning Algorithms in Weka

The problem of predictive modeling is to create models that have good performance making predictions on new unseen data. Therefore it is critically important to use robust techniques to train and evaluate your models on your available training data. The more reliable the estimate of the performance on your model, the further you can push […]

## How to Use Machine Learning Algorithms in Weka

A big benefit of using the Weka platform is the large number of supported machine learning algorithms. The more algorithms that you can try on your problem the more you will learn about your problem and likely closer you will get to discovering the one or few algorithms that perform best. In this post you will […]

## 8 Inspirational Applications of Deep Learning

It is hyperbole to say deep learning is achieving state-of-the-art results across a range of difficult problem domains. A fact, but also hyperbole. There is a lot of excitement around artificial intelligence, machine learning and deep learning at the moment. It is also an amazing opportunity to get on on the ground floor of some really powerful tech. […]

## How to Perform Feature Selection With Machine Learning Data in Weka

Raw machine learning data contains a mixture of attributes, some of which are relevant to making predictions. How do you know which features to use and which to remove? The process of selecting features in your data to model your problem is called feature selection. In this post you will discover how to perform feature selection […]