SALE! Use code blackfriday for 40% off everything!
Hurry, sale ends soon! Click to see the full catalog.

Archive | Ensemble Learning

Gradient Boosting with Scikit-Learn, XGBoost, LightGBM, and CatBoost

Gradient Boosting with Scikit-Learn, XGBoost, LightGBM, and CatBoost

Gradient boosting is a powerful ensemble machine learning algorithm. It’s popular for structured predictive modeling problems, such as classification and regression on tabular data, and is often the main algorithm or one of the main algorithms used in winning solutions to machine learning competitions, like those on Kaggle. There are many implementations of gradient boosting […]

Continue Reading 30
How to Develop Multioutput Regression Models in Python

How to Develop Multi-Output Regression Models with Python

Multioutput regression are regression problems that involve predicting two or more numerical values given an input example. An example might be to predict a coordinate given an input, e.g. predicting x and y values. Another example would be multi-step time series forecasting that involves predicting multiple future time series of a given variable. Many machine […]

Continue Reading 109
How to Develop Super Learner Ensembles in Python

How to Develop Super Learner Ensembles in Python

Selecting a machine learning algorithm for a predictive modeling problem involves evaluating many different models and model configurations using k-fold cross-validation. The super learner is an ensemble machine learning algorithm that combines all of the models and model configurations that you might investigate for a predictive modeling problem and uses them to make a prediction […]

Continue Reading 79
How to Use Out-of-Fold Predictions in Machine Learning

How to Use Out-of-Fold Predictions in Machine Learning

Machine learning algorithms are typically evaluated using resampling techniques such as k-fold cross-validation. During the k-fold cross-validation process, predictions are made on test sets comprised of data not used to train the model. These predictions are referred to as out-of-fold predictions, a type of out-of-sample predictions. Out-of-fold predictions play an important role in machine learning […]

Continue Reading 10