SALE! Use code midyear2022 for 25% off everything!
Hurry, sale ends Sunday! Click to see the full catalog.

Author Archive | Mehreen Saeed


Data Visualization in Python with matplotlib, Seaborn, and Bokeh

Data visualization is an important aspect of all AI and machine learning applications. You can gain key insights into your data through different graphical representations. In this tutorial, we’ll talk about a few options for data visualization in Python. We’ll use the MNIST dataset and the Tensorflow library for number crunching and data manipulation. To […]

Continue Reading 4
m mani

More Special Features in Python

Python is an awesome programming language! It is one of the most popular languages for developing AI and machine learning applications. With a very easy-to-learn syntax, Python has some special features that distinguish it from other languages. In this tutorial, we’ll talk about some unique attributes of the Python programming language. After completing this tutorial, […]

Continue Reading 8

Functional Programming in Python

Python is a fantastic programming language. It is likely to be your first choice for developing a machine learning or data science application. Python is interesting because it is a multi-paradigm programming language that can be used for both object-oriented and imperative programming. It has a simple syntax that is easy to read and comprehend. […]

Continue Reading 0

Method of Lagrange Multipliers: The Theory Behind Support Vector Machines (Part 3: Implementing An SVM From Scratch In Python)

The mathematics that powers a support vector machine (SVM) classifier is beautiful. It is important to not only learn the basic model of an SVM but also know how you can implement the entire model from scratch. This is a continuation of our series of tutorials on SVMs. In part1 and part2 of this series we […]

Continue Reading 2

Method of Lagrange Multipliers: The Theory Behind Support Vector Machines (Part 2: The Non-Separable Case)

This tutorial is an extension of Method Of Lagrange Multipliers: The Theory Behind Support Vector Machines (Part 1: The Separable Case)) and explains the non-separable case. In real life problems positive and negative training examples may not be completely separable by a linear decision boundary. This tutorial explains how a soft margin can be built […]

Continue Reading 0

Method of Lagrange Multipliers: The Theory Behind Support Vector Machines (Part 1: The Separable Case)

This tutorial is designed for anyone looking for a deeper understanding of how Lagrange multipliers are used in building up the model for support vector machines (SVMs). SVMs were initially designed to solve binary classification problems and later extended and applied to regression and unsupervised learning. They have shown their success in solving many complex machine […]

Continue Reading 0

Adding A Custom Attention Layer To Recurrent Neural Network In Keras

Deep learning networks have gained immense popularity in the past few years. The ‘attention mechanism’ is integrated with the deep learning networks to improve their performance. Adding attention component to the network has shown significant improvement in tasks such as machine translation, image recognition, text summarization and similar applications. This tutorial shows how to add […]

Continue Reading 39