Andrew Ng is famous for his Stanford machine learning course provided on Coursera. In 2017, he released a five-part course on deep learning also on Coursera titled “Deep Learning Specialization” that included one module on deep learning for computer vision titled “Convolutional Neural Networks.” This course provides an excellent introduction to deep learning methods for […]
Archive | Deep Learning for Computer Vision
8 Books for Getting Started With Computer Vision
Computer vision is a subfield of artificial intelligence concerned with understanding the content of digital images, such as photographs and videos. Deep learning has made impressive inroads on challenging computer vision tasks and makes the promise of further advances. Before diving into the application of deep learning techniques to computer vision, it may be helpful […]
9 Applications of Deep Learning for Computer Vision
The field of computer vision is shifting from statistical methods to deep learning neural network methods. There are still many challenging problems to solve in computer vision. Nevertheless, deep learning methods are achieving state-of-the-art results on some specific problems. It is not just the performance of deep learning models on benchmark problems that is most […]
How to Develop Competence With Deep Learning for Computer Vision
Computer vision is perhaps one area that has been most impacted by developments in deep learning. It can be difficult to both develop and to demonstrate competence with deep learning for problems in the field of computer vision. It is not clear how to get started, what the most important techniques are, and the types […]
A Gentle Introduction to Transfer Learning for Deep Learning
Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning where pre-trained models are used as the starting point on computer vision and natural language processing tasks given the vast […]