# Author Archive | Muhammad Asad Iqbal Khan ## Calculating Derivatives in PyTorch

Derivatives are one of the most fundamental concepts in calculus. They describe how changes in the variable inputs affect the function outputs. The objective of this article is to provide a high-level introduction to calculating derivatives in PyTorch for those who are new to the framework. PyTorch offers a convenient way to calculate derivatives for […] ## Two-Dimensional Tensors in Pytorch

Two-dimensional tensors are analogous to two-dimensional metrics. Like a two-dimensional metric, a two-dimensional tensor also has $n$ number of rows and columns. Let’s take a gray-scale image as an example, which is a two-dimensional matrix of numeric values, commonly known as pixels. Ranging from ‘0’ to ‘255’, each number represents a pixel intensity value. Here, […] ## Anomaly Detection with Isolation Forest and Kernel Density Estimation

Anomaly detection is to find data points that deviate from the norm. In other words, those are the points that do not follow expected patterns. Outliers and exceptions are terms used to describe unusual data. Anomaly detection is important in a variety of fields because it gives valuable and actionable insights. An abnormality in an […] ## One-Dimensional Tensors in Pytorch

PyTorch is an open-source deep learning framework based on Python language. It allows you to build, train, and deploy deep learning models, offering a lot of versatility and efficiency. PyTorch is primarily focused on tensor operations while a tensor can be a number, matrix, or a multi-dimensional array. In this tutorial, we will perform some […]