Author Archive | Muhammad Asad Iqbal Khan


Training Logistic Regression with Cross-Entropy Loss in PyTorch

In the previous session of our PyTorch series, we demonstrated how badly initialized weights can impact the accuracy of a classification model when mean square error (MSE) loss is used. We noticed that the model didn’t converge during training and its accuracy was also significantly reduced. In the following, you will see what happens if […]

Continue Reading

Building a Softmax Classifier for Images in PyTorch

Softmax classifier is a type of classifier in supervised learning. It is an important building block in deep learning networks and the most popular choice among deep learning practitioners. Softmax classifier is suitable for multiclass classification, which outputs the probability for each of the classes. This tutorial will teach you how to build a softmax […]

Continue Reading

Introduction to Softmax Classifier in PyTorch

While a logistic regression classifier is used for binary class classification, softmax classifier is a supervised learning algorithm which is mostly used when multiple classes are involved. Softmax classifier works by assigning a probability distribution to each class. The probability distribution of the class with the highest probability is normalized to 1, and all other […]

Continue Reading

Making Predictions with Logistic Regression in PyTorch

Logistic regression is a statistical technique for modeling the probability of an event. It is often used in machine learning for making predictions. We apply logistic regression when a categorical outcome needs to be predicted. In PyTorch, the construction of logistic regression is similar to that of linear regression. They both applied to linear inputs. […]

Continue Reading