Search results for "embedding"

Promise of Deep Learning for Natural Language Processing

Promise of Deep Learning for Natural Language Processing

The promise of deep learning in the field of natural language processing is the better performance by models that may require more data but less linguistic expertise to train and operate. There is a lot of hype and large claims around deep learning methods, but beyond the hype, deep learning methods are achieving state-of-the-art results on […]

Continue Reading 18
7 Applications of Deep Learning for Natural Language Processing

7 Applications of Deep Learning for Natural Language Processing

The field of natural language processing is shifting from statistical methods to neural network methods. There are still many challenging problems to solve in natural language. Nevertheless, deep learning methods are achieving state-of-the-art results on some specific language problems. It is not just the performance of deep learning models on benchmark problems that is most […]

Continue Reading 60
Encoder-Decoder Long Short-Term Memory Networks

Encoder-Decoder Long Short-Term Memory Networks

Gentle introduction to the Encoder-Decoder LSTMs for sequence-to-sequence prediction with example Python code. The Encoder-Decoder LSTM is a recurrent neural network designed to address sequence-to-sequence problems, sometimes called seq2seq. Sequence-to-sequence prediction problems are challenging because the number of items in the input and output sequences can vary. For example, text translation and learning to execute […]

Continue Reading 103
How to Get Reproducible Results from Neural Networks with Keras

How to Get Reproducible Results with Keras

Neural network algorithms are stochastic. This means they make use of randomness, such as initializing to random weights, and in turn the same network trained on the same data can produce different results. This can be confusing to beginners as the algorithm appears unstable, and in fact they are by design. The random initialization allows […]

Continue Reading 69
Sequence Classification with LSTM Recurrent Neural Networks in Python with Keras

Sequence Classification with LSTM Recurrent Neural Networks in Python with Keras

Sequence classification is a predictive modeling problem where you have some sequence of inputs over space or time, and the task is to predict a category for the sequence. This problem is difficult because the sequences can vary in length, comprise a very large vocabulary of input symbols, and may require the model to learn […]

Continue Reading 691
Automatic Object Detection

8 Inspirational Applications of Deep Learning

It is hyperbole to say deep learning is achieving state-of-the-art results across a range of difficult problem domains. A fact, but also hyperbole. There is a lot of excitement around artificial intelligence, machine learning and deep learning at the moment. It is also an amazing opportunity to get on on the ground floor of some really powerful tech. […]

Continue Reading 84
Predict Sentiment From Movie Reviews Using Deep Learning

How to Predict Sentiment from Movie Reviews Using Deep Learning (Text Classification)

Sentiment analysis is a natural language processing problem where text is understood, and the underlying intent is predicted. In this post, you will discover how you can predict the sentiment of movie reviews as either positive or negative in Python using the Keras deep learning library. After reading this post, you will know: About the […]

Continue Reading 171
Deep Learning Books

Deep Learning Books

There are not many books on deep learning at the moment because it is such a young area of study. There are a few books available though and some very interesting books in the pipeline that you can purchase by early access. In this post, you will discover the books available right now on deep […]

Continue Reading 16