Search results for "embedding"

Line Plot for Supervised Greedy Layer-Wise Pretraining Showing Model Layers vs Train and Test Set Classification Accuracy on the Blobs Classification Problem

How to Use Greedy Layer-Wise Pretraining in Deep Learning Neural Networks

Training deep neural networks was traditionally challenging as the vanishing gradient meant that weights in layers close to the input layer were not updated in response to errors calculated on the training dataset. An innovation and important milestone in the field of deep learning was greedy layer-wise pretraining that allowed very deep neural networks to […]

Continue Reading 57
Overview of Course Structure

Practical Deep Learning for Coders (Review)

Practical deep learning is a challenging subject in which to get started. It is often taught in a bottom-up manner, requiring that you first get familiar with linear algebra, calculus, and mathematical optimization before eventually learning the neural network techniques. This can take years, and most of the background theory will not help you to […]

Continue Reading 26
Plot of the Multichannel Convolutional Neural Network For Text

How to Develop a Multichannel CNN Model for Text Classification

A standard deep learning model for text classification and sentiment analysis uses a word embedding layer and one-dimensional convolutional neural network. The model can be expanded by using multiple parallel convolutional neural networks that read the source document using different kernel sizes. This, in effect, creates a multichannel convolutional neural network for text that reads […]

Continue Reading 203
How to Develop a Neural Machine Translation System in Keras

How to Develop a Neural Machine Translation System from Scratch

Develop a Deep Learning Model to Automatically Translate from German to English in Python with Keras, Step-by-Step. Machine translation is a challenging task that traditionally involves large statistical models developed using highly sophisticated linguistic knowledge. Neural machine translation is the use of deep neural networks for the problem of machine translation. In this tutorial, you […]

Continue Reading 580
How to Configure an Encoder-Decoder Model for Neural Machine Translation

How to Configure an Encoder-Decoder Model for Neural Machine Translation

The encoder-decoder architecture for recurrent neural networks is achieving state-of-the-art results on standard machine translation benchmarks and is being used in the heart of industrial translation services. The model is simple, but given the large amount of data required to train it, tuning the myriad of design decisions in the model in order get top […]

Continue Reading 18
Encoder-Decoder Recurrent Neural Network Models for Neural Machine Translation

Encoder-Decoder Recurrent Neural Network Models for Neural Machine Translation

The encoder-decoder architecture for recurrent neural networks is the standard neural machine translation method that rivals and in some cases outperforms classical statistical machine translation methods. This architecture is very new, having only been pioneered in 2014, although, has been adopted as the core technology inside Google’s translate service. In this post, you will discover […]

Continue Reading 22
Encoder-Decoder Models for Text Summarization in Keras

Encoder-Decoder Models for Text Summarization in Keras

Text summarization is a problem in natural language processing of creating a short, accurate, and fluent summary of a source document. The Encoder-Decoder recurrent neural network architecture developed for machine translation has proven effective when applied to the problem of text summarization. It can be difficult to apply this architecture in the Keras deep learning […]

Continue Reading 125
Encoder-Decoder Deep Learning Models for Text Summarization

Encoder-Decoder Deep Learning Models for Text Summarization

Text summarization is the task of creating short, accurate, and fluent summaries from larger text documents. Recently deep learning methods have proven effective at the abstractive approach to text summarization. In this post, you will discover three different models that build on top of the effective Encoder-Decoder architecture developed for sequence-to-sequence prediction in machine translation. […]

Continue Reading 8