Search results for "embedding"

What Are Word Embeddings for Text?

What Are Word Embeddings for Text?

Word embeddings are a type of word representation that allows words with similar meaning to have a similar representation. They are a distributed representation for text that is perhaps one of the key breakthroughs for the impressive performance of deep learning methods on challenging natural language processing problems. In this post, you will discover the […]

Continue Reading 91
Scatter Plot of PCA Projection of Word2Vec Model

How to Develop Word Embeddings in Python with Gensim

Word embeddings are a modern approach for representing text in natural language processing. Word embedding algorithms like word2vec and GloVe are key to the state-of-the-art results achieved by neural network models on natural language processing problems like machine translation. In this tutorial, you will discover how to train and load word embedding models for natural […]

Continue Reading 213
How to Use Word Embedding Layers for Deep Learning with Keras

How to Use Word Embedding Layers for Deep Learning with Keras

Word embeddings provide a dense representation of words and their relative meanings. They are an improvement over sparse representations used in simpler bag of word model representations. Word embeddings can be learned from text data and reused among projects. They can also be learned as part of fitting a neural network on text data. In this […]

Continue Reading 644

The Transformer Model

We have already familiarized ourselves with the concept of self-attention as implemented by the Transformer attention mechanism for neural machine translation. We will now be shifting our focus on the details of the Transformer architecture itself, to discover how self-attention can be implemented without relying on the use of recurrence and convolutions. In this tutorial, […]

Continue Reading 14

The Attention Mechanism from Scratch

The attention mechanism was introduced to improve the performance of the encoder-decoder model for machine translation. The idea behind the attention mechanism was to permit the decoder to utilize the most relevant parts of the input sequence in a flexible manner, by a weighted combination of all of the encoded input vectors, with the most […]

Continue Reading 15

A Bird’s Eye View of Research on Attention

Attention is a concept that is scientifically studied across multiple disciplines, including psychology, neuroscience and, more recently, machine learning. While all disciplines may have produced their own definitions for attention, there is one core quality they can all agree on: attention is a mechanism for making both biological and artificial neural systems more flexible.  In […]

Continue Reading 7

A Gentle Introduction to Vector Space Models

Vector space models are to consider the relationship between data that are represented by vectors. It is popular in information retrieval systems but also useful for other purposes. Generally, this allows us to compare the similarity of two vectors from a geometric perspective. In this tutorial, we will see what is a vector space model […]

Continue Reading 1