[New Book] Click to get Deep Learning with PyTorch!
Use the offer code 20offearlybird to get 20% off.

Search results for "translation"

bahdanau_cover

The Bahdanau Attention Mechanism

Conventional encoder-decoder architectures for machine translation encoded every source sentence into a fixed-length vector, regardless of its length, from which the decoder would then generate a translation. This made it difficult for the neural network to cope with long sentences, essentially resulting in a performance bottleneck.  The Bahdanau attention was proposed to address the performance […]

Continue Reading 4
yahya-ehsan-L895sqROaGw-unsplash

Adding a Custom Attention Layer to a Recurrent Neural Network in Keras

Deep learning networks have gained immense popularity in the past few years. The “attention mechanism” is integrated with deep learning networks to improve their performance. Adding an attention component to the network has shown significant improvement in tasks such as machine translation, image recognition, text summarization, and similar applications. This tutorial shows how to add […]

Continue Reading 49
tour_cover

A Tour of Attention-Based Architectures

As the popularity of attention in machine learning grows, so does the list of neural architectures that incorporate an attention mechanism. In this tutorial, you will discover the salient neural architectures that have been used in conjunction with attention. After completing this tutorial, you will better understand how the attention mechanism is incorporated into different […]

Continue Reading 4
attention_mechanism_cover

The Attention Mechanism from Scratch

The attention mechanism was introduced to improve the performance of the encoder-decoder model for machine translation. The idea behind the attention mechanism was to permit the decoder to utilize the most relevant parts of the input sequence in a flexible manner, by a weighted combination of all the encoded input vectors, with the most relevant […]

Continue Reading 23
what_is_attention_cover

What Is Attention?

Attention is becoming increasingly popular in machine learning, but what makes it such an attractive concept? What is the relationship between attention applied in artificial neural networks and its biological counterpart? What components would one expect to form an attention-based system in machine learning? In this tutorial, you will discover an overview of attention and […]

Continue Reading 14
attention_research_cover

A Bird’s Eye View of Research on Attention

Attention is a concept that is scientifically studied across multiple disciplines, including psychology, neuroscience, and, more recently, machine learning. While all disciplines may have produced their own definitions for attention, one core quality they can all agree on is that attention is a mechanism for making both biological and artificial neural systems more flexible.  In […]

Continue Reading 7
Standard Machine Learning Datasets for Imbalanced Classification

Standard Machine Learning Datasets for Imbalanced Classification

An imbalanced classification problem is a problem that involves predicting a class label where the distribution of class labels in the training dataset is skewed. Many real-world classification problems have an imbalanced class distribution, therefore it is important for machine learning practitioners to get familiar with working with these types of problems. In this tutorial, […]

Continue Reading 14
GANs in Action

9 Books on Generative Adversarial Networks (GANs)

Generative Adversarial Networks, or GANs for short, were first described in the 2014 paper by Ian Goodfellow, et al. titled “Generative Adversarial Networks.” Since then, GANs have seen a lot of attention given that they are perhaps one of the most effective techniques for generating large, high-quality synthetic images. As such, a number of books […]

Continue Reading 14