The amount of data you need depends both on the complexity of your problem and on the complexity of your chosen algorithm. This is a fact, but does not help you if you are at the pointy end of a machine learning project. A common question I get asked is: How much data do I […]

# Search results for "translation"

## Gentle Introduction to Models for Sequence Prediction with RNNs

Sequence prediction is a problem that involves using historical sequence information to predict the next value or values in the sequence. The sequence may be symbols like letters in a sentence or real values like those in a time series of prices. Sequence prediction may be easiest to understand in the context of time series […]

## A Tour of Recurrent Neural Network Algorithms for Deep Learning

Recurrent neural networks, or RNNs, are a type of artificial neural network that add additional weights to the network to create cycles in the network graph in an effort to maintain an internal state. The promise of adding state to neural networks is that they will be able to explicitly learn and exploit context in […]

## Attention in Long Short-Term Memory Recurrent Neural Networks

The Encoder-Decoder architecture is popular because it has demonstrated state-of-the-art results across a range of domains. A limitation of the architecture is that it encodes the input sequence to a fixed length internal representation. This imposes limits on the length of input sequences that can be reasonably learned and results in worse performance for very […]

## Techniques to Handle Very Long Sequences with LSTMs

Long Short-Term Memory or LSTM recurrent neural networks are capable of learning and remembering over long sequences of inputs. LSTMs work very well if your problem has one output for every input, like time series forecasting or text translation. But LSTMs can be challenging to use when you have very long input sequences and only […]

## How to Learn to Echo Random Integers with LSTMs in Keras

Long Short-Term Memory (LSTM) Recurrent Neural Networks are able to learn the order dependence in long sequence data. They are a fundamental technique used in a range of state-of-the-art results, such as image captioning and machine translation. They can also be difficult to understand, specifically how to frame a problem to get the most out […]

## A Gentle Introduction to Long Short-Term Memory Networks by the Experts

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network capable of learning order dependence in sequence prediction problems. This is a behavior required in complex problem domains like machine translation, speech recognition, and more. LSTMs are a complex area of deep learning. It can be hard to get your hands around what […]

## Learn to Add Numbers with an Encoder-Decoder LSTM Recurrent Neural Network

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) that are capable of learning the relationships between elements in an input sequence. A good demonstration of LSTMs is to learn how to combine multiple terms together using a mathematical operation like a sum and outputting the result of the calculation. A […]

## 8 Inspirational Applications of Deep Learning

It is hyperbole to say deep learning is achieving state-of-the-art results across a range of difficult problem domains. A fact, but also hyperbole. There is a lot of excitement around artificial intelligence, machine learning and deep learning at the moment. It is also an amazing opportunity to get on on the ground floor of some really powerful tech. […]

## Deep Learning Courses

It can be difficult to get started in deep learning. Thankfully, a number of universities have opened up their deep learning course material for free, which can be a great jump-start when you are looking to better understand the foundations of deep learning. In this post you will discover the deep learning courses that you […]