Search results for "text summarization"

How to Implement Beam Search Decoder for Natural Language Processing

How to Implement a Beam Search Decoder for Natural Language Processing

Natural language processing tasks, such as caption generation and machine translation, involve generating sequences of words. Models developed for these problems often operate by generating probability distributions across the vocabulary of output words and it is up to decoding algorithms to sample the probability distributions to generate the most likely sequences of words. In this […]

Continue Reading 45
Caption Generation with the Inject and Merge Architectures for the Encoder-Decoder Model

Caption Generation with the Inject and Merge Encoder-Decoder Models

Caption generation is a challenging artificial intelligence problem that draws on both computer vision and natural language processing. The encoder-decoder recurrent neural network architecture has been shown to be effective at this problem. The implementation of this architecture can be distilled into inject and merge based models, and both make different assumptions about the role […]

Continue Reading 6
What is Teacher Forcing for Recurrent Neural Networks?

What is Teacher Forcing for Recurrent Neural Networks?

Teacher forcing is a method for quickly and efficiently training recurrent neural network models that use the ground truth from a prior time step as input. It is a network training method critical to the development of deep learning language models used in machine translation, text summarization, and image captioning, among many other applications. In […]

Continue Reading 40
How to Develop an Encoder-Decoder Model for Sequence-to-Sequence Prediction in Keras

How to Develop an Encoder-Decoder Model for Sequence-to-Sequence Prediction in Keras

The encoder-decoder model provides a pattern for using recurrent neural networks to address challenging sequence-to-sequence prediction problems such as machine translation. Encoder-decoder models can be developed in the Keras Python deep learning library and an example of a neural machine translation system developed with this model has been described on the Keras blog, with sample […]

Continue Reading 331
Gentle Introduction to Statistical Language Modeling and Neural Language Models

Gentle Introduction to Statistical Language Modeling and Neural Language Models

Language modeling is central to many important natural language processing tasks. Recently, neural-network-based language models have demonstrated better performance than classical methods both standalone and as part of more challenging natural language processing tasks. In this post, you will discover language modeling for natural language processing. After reading this post, you will know: Why language […]

Continue Reading 10
Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

The encoder-decoder model provides a pattern for using recurrent neural networks to address challenging sequence-to-sequence prediction problems such as machine translation. Attention is an extension to the encoder-decoder model that improves the performance of the approach on longer sequences. Global attention is a simplification of attention that may be easier to implement in declarative deep […]

Continue Reading 10
7 Applications of Deep Learning for Natural Language Processing

7 Applications of Deep Learning for Natural Language Processing

The field of natural language processing is shifting from statistical methods to neural network methods. There are still many challenging problems to solve in natural language. Nevertheless, deep learning methods are achieving state-of-the-art results on some specific language problems. It is not just the performance of deep learning models on benchmark problems that is most […]

Continue Reading 58
Gentle Introduction to Making Predictions with Sequences

Making Predictions with Sequences

Sequence prediction is different from other types of supervised learning problems. The sequence imposes an order on the observations that must be preserved when training models and making predictions. Generally, prediction problems that involve sequence data are referred to as sequence prediction problems, although there are a suite of problems that differ based on the […]

Continue Reading 189