Sequence prediction is different from other types of supervised learning problems. The sequence imposes an order on the observations that must be preserved when training models and making predictions. Generally, prediction problems that involve sequence data are referred to as sequence prediction problems, although there are a suite of problems that differ based on the […]

# Search results for "text summarization"

## Attention in Long Short-Term Memory Recurrent Neural Networks

The Encoder-Decoder architecture is popular because it has demonstrated state-of-the-art results across a range of domains. A limitation of the architecture is that it encodes the input sequence to a fixed length internal representation. This imposes limits on the length of input sequences that can be reasonably learned and results in worse performance for very […]

## A Brief Introduction to BERT

As we learned what a Transformer is and how we might train the Transformer model, we notice that it is a great tool to make a computer understand human language. However, the Transformer was originally designed as a model to translate one language to another. If we repurpose it for a different task, we would […]

## What Is Semi-Supervised Learning

Semi-supervised learning is a learning problem that involves a small number of labeled examples and a large number of unlabeled examples. Learning problems of this type are challenging as neither supervised nor unsupervised learning algorithms are able to make effective use of the mixtures of labeled and untellable data. As such, specialized semis-supervised learning algorithms […]

## How to Implement Bayesian Optimization from Scratch in Python

In this tutorial, you will discover how to implement the Bayesian Optimization algorithm for complex optimization problems. Global optimization is a challenging problem of finding an input that results in the minimum or maximum cost of a given objective function. Typically, the form of the objective function is complex and intractable to analyze and is […]

## LSTMs for Human Activity Recognition Time Series Classification

Human activity recognition is the problem of classifying sequences of accelerometer data recorded by specialized harnesses or smart phones into known well-defined movements. Classical approaches to the problem involve hand crafting features from the time series data based on fixed-sized windows and training machine learning models, such as ensembles of decision trees. The difficulty is […]

## A Gentle Introduction to the Chi-Squared Test for Machine Learning

A common problem in applied machine learning is determining whether input features are relevant to the outcome to be predicted. This is the problem of feature selection. In the case of classification problems where input variables are also categorical, we can use statistical tests to determine whether the output variable is dependent or independent of […]

## How to Visualize a Deep Learning Neural Network Model in Keras

The Keras Python deep learning library provides tools to visualize and better understand your neural network models. In this tutorial, you will discover exactly how to summarize and visualize your deep learning models in Keras. After completing this tutorial, you will know: How to create a textual summary of your deep learning model. How to […]

## What Is Natural Language Processing?

Natural Language Processing, or NLP for short, is broadly defined as the automatic manipulation of natural language, like speech and text, by software. The study of natural language processing has been around for more than 50 years and grew out of the field of linguistics with the rise of computers. In this post, you will […]

## Top Books on Natural Language Processing

Natural Language Processing, or NLP for short, is the study of computational methods for working with speech and text data. The field is dominated by the statistical paradigm and machine learning methods are used for developing predictive models. In this post, you will discover the top books that you can read to get started with […]