Search results for "summarization"

What is Teacher Forcing for Recurrent Neural Networks?

What is Teacher Forcing for Recurrent Neural Networks?

Teacher forcing is a method for quickly and efficiently training recurrent neural network models that use the ground truth from a prior time step as input. It is a network training method critical to the development of deep learning language models used in machine translation, text summarization, and image captioning, among many other applications. In […]

Continue Reading 50
A Gentle Introduction to Calculating the BLEU Score for Text in Python

A Gentle Introduction to Calculating the BLEU Score for Text in Python

BLEU, or the Bilingual Evaluation Understudy, is a score for comparing a candidate translation of text to one or more reference translations. Although developed for translation, it can be used to evaluate text generated for a suite of natural language processing tasks. In this tutorial, you will discover the BLEU score for evaluating and scoring […]

Continue Reading 111
How to Develop an Encoder-Decoder Model for Sequence-to-Sequence Prediction in Keras

How to Develop an Encoder-Decoder Model for Sequence-to-Sequence Prediction in Keras

The encoder-decoder model provides a pattern for using recurrent neural networks to address challenging sequence-to-sequence prediction problems such as machine translation. Encoder-decoder models can be developed in the Keras Python deep learning library and an example of a neural machine translation system developed with this model has been described on the Keras blog, with sample […]

Continue Reading 384
Gentle Introduction to Statistical Language Modeling and Neural Language Models

Gentle Introduction to Statistical Language Modeling and Neural Language Models

Language modeling is central to many important natural language processing tasks. Recently, neural-network-based language models have demonstrated better performance than classical methods both standalone and as part of more challenging natural language processing tasks. In this post, you will discover language modeling for natural language processing. After reading this post, you will know: Why language […]

Continue Reading 10
Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

The encoder-decoder model provides a pattern for using recurrent neural networks to address challenging sequence-to-sequence prediction problems such as machine translation. Attention is an extension to the encoder-decoder model that improves the performance of the approach on longer sequences. Global attention is a simplification of attention that may be easier to implement in declarative deep […]

Continue Reading 12
How to Develop a Word Embedding Model for Predicting Movie Review Sentiment

Deep Convolutional Neural Network for Sentiment Analysis (Text Classification)

Develop a Deep Learning Model to Automatically Classify Movie Reviews as Positive or Negative in Python with Keras, Step-by-Step. Word embeddings are a technique for representing text where different words with similar meaning have a similar real-valued vector representation. They are a key breakthrough that has led to great performance of neural network models on […]

Continue Reading 255
How to Develop a Deep Learning Bag-of-Words Model for Predicting Sentiment in Movie Reviews

How to Develop a Deep Learning Bag-of-Words Model for Sentiment Analysis (Text Classification)

Movie reviews can be classified as either favorable or not. The evaluation of movie review text is a classification problem often called sentiment analysis. A popular technique for developing sentiment analysis models is to use a bag-of-words model that transforms documents into vectors where each word in the document is assigned a score. In this […]

Continue Reading 129
How to Prepare Movie Review Data for Sentiment Analysis

How to Prepare Movie Review Data for Sentiment Analysis (Text Classification)

Text data preparation is different for each problem. Preparation starts with simple steps, like loading data, but quickly gets difficult with cleaning tasks that are very specific to the data you are working with. You need help as to where to begin and what order to work through the steps from raw data to data […]

Continue Reading 48