Search results for "summarization"

Encoder-Decoder Models for Text Summarization in Keras

Encoder-Decoder Models for Text Summarization in Keras

Text summarization is a problem in natural language processing of creating a short, accurate, and fluent summary of a source document. The Encoder-Decoder recurrent neural network architecture developed for machine translation has proven effective when applied to the problem of text summarization. It can be difficult to apply this architecture in the Keras deep learning […]

Continue Reading 138
How to Prepare News Articles for Text Summarization

How to Prepare News Articles for Text Summarization

Text summarization is the task of creating a short, accurate, and fluent summary of an article. A popular and free dataset for use in text summarization experiments with deep learning methods is the CNN News story dataset. In this tutorial, you will discover how to prepare the CNN News Dataset for text summarization. After completing […]

Continue Reading 45
Encoder-Decoder Deep Learning Models for Text Summarization

Encoder-Decoder Deep Learning Models for Text Summarization

Text summarization is the task of creating short, accurate, and fluent summaries from larger text documents. Recently deep learning methods have proven effective at the abstractive approach to text summarization. In this post, you will discover three different models that build on top of the effective Encoder-Decoder architecture developed for sequence-to-sequence prediction in machine translation. […]

Continue Reading 10
A Gentle Introduction to Text Summarization

A Gentle Introduction to Text Summarization

Text summarization is the problem of creating a short, accurate, and fluent summary of a longer text document. Automatic text summarization methods are greatly needed to address the ever-growing amount of text data available online to both better help discover relevant information and to consume relevant information faster. In this post, you will discover the […]

Continue Reading 39
yahya-ehsan-L895sqROaGw-unsplash

Adding A Custom Attention Layer To Recurrent Neural Network In Keras

Deep learning networks have gained immense popularity in the past few years. The ‘attention mechanism’ is integrated with the deep learning networks to improve their performance. Adding attention component to the network has shown significant improvement in tasks such as machine translation, image recognition, text summarization and similar applications. This tutorial shows how to add […]

Continue Reading 39
What Is Semi-Supervised Learning

What Is Semi-Supervised Learning

Semi-supervised learning is a learning problem that involves a small number of labeled examples and a large number of unlabeled examples. Learning problems of this type are challenging as neither supervised nor unsupervised learning algorithms are able to make effective use of the mixtures of labeled and untellable data. As such, specialized semis-supervised learning algorithms […]

Continue Reading 5
A Gentle Introduction to Stochastic Optimization Algorithms

A Gentle Introduction to Stochastic Optimization Algorithms

Stochastic optimization refers to the use of randomness in the objective function or in the optimization algorithm. Challenging optimization algorithms, such as high-dimensional nonlinear objective problems, may contain multiple local optima in which deterministic optimization algorithms may get stuck. Stochastic optimization algorithms provide an alternative approach that permits less optimal local decisions to be made […]

Continue Reading 6
The Three Levels of Deep Learning Competence

3 Levels of Deep Learning Competence

Deep learning is not a magic bullet, but the techniques have shown to be highly effective in a large number of very challenging problem domains. This means that there is a ton of demand by businesses for effective deep learning practitioners. The problem is, how can the average business differentiate between good and bad practitioners? […]

Continue Reading 16
How to Develop RNN Models for Human Activity Recognition Time Series Classification

LSTMs for Human Activity Recognition Time Series Classification

Human activity recognition is the problem of classifying sequences of accelerometer data recorded by specialized harnesses or smart phones into known well-defined movements. Classical approaches to the problem involve hand crafting features from the time series data based on fixed-sized windows and training machine learning models, such as ensembles of decision trees. The difficulty is […]

Continue Reading 409