Search results for "stacking"

Box Plot of Gradient Boosting Ensemble Tree Depth vs. Classification Accuracy

How to Develop a Gradient Boosting Machine Ensemble in Python

The Gradient Boosting Machine is a powerful ensemble machine learning algorithm that uses decision trees. Boosting is a general ensemble technique that involves sequentially adding models to the ensemble where subsequent models correct the performance of prior models. AdaBoost was the first algorithm to deliver on the promise of boosting. Gradient boosting is a generalization […]

Continue Reading 20
Box Plot of Soft Voting Ensemble Compared to Standalone Models for Binary Classification

How to Develop Voting Ensembles With Python

Voting is an ensemble machine learning algorithm. For regression, a voting ensemble involves making a prediction that is the average of multiple other regression models. In classification, a hard voting ensemble involves summing the votes for crisp class labels from other models and predicting the class with the most votes. A soft voting ensemble involves […]

Continue Reading 78
PyTorch Tutorial - How to Develop Deep Learning Models

PyTorch Tutorial: How to Develop Deep Learning Models with Python

Predictive modeling with deep learning is a skill that modern developers need to know. PyTorch is the premier open-source deep learning framework developed and maintained by Facebook. At its core, PyTorch is a mathematical library that allows you to perform efficient computation and automatic differentiation on graph-based models. Achieving this directly is challenging, although thankfully, […]

Continue Reading 120
How to Develop Super Learner Ensembles in Python

How to Develop Super Learner Ensembles in Python

Selecting a machine learning algorithm for a predictive modeling problem involves evaluating many different models and model configurations using k-fold cross-validation. The super learner is an ensemble machine learning algorithm that combines all of the models and model configurations that you might investigate for a predictive modeling problem and uses them to make a prediction […]

Continue Reading 144
How to Use Out-of-Fold Predictions in Machine Learning

How to Use Out-of-Fold Predictions in Machine Learning

Machine learning algorithms are typically evaluated using resampling techniques such as k-fold cross-validation. During the k-fold cross-validation process, predictions are made on test sets comprised of data not used to train the model. These predictions are referred to as out-of-fold predictions, a type of out-of-sample predictions. Out-of-fold predictions play an important role in machine learning […]

Continue Reading 18
Plot of Satellite to Google Map Translated Images Using Pix2Pix After 100 Training Epochs

How to Develop a Pix2Pix GAN for Image-to-Image Translation

The Pix2Pix Generative Adversarial Network, or GAN, is an approach to training a deep convolutional neural network for image-to-image translation tasks. The careful configuration of architecture as a type of image-conditional GAN allows for both the generation of large images compared to prior GAN models (e.g. such as 256×256 pixels) and the capability of performing […]

Continue Reading 341