Search results for "stacking"

Box and Whisker Plots of Classification Accuracy for Standalone Machine Learning Models

Growing and Pruning Ensembles in Python

Ensemble member selection refers to algorithms that optimize the composition of an ensemble. This may involve growing an ensemble from available models or pruning members from a fully defined ensemble. The goal is often to reduce the model or computational complexity of an ensemble with little or no effect on the performance of an ensemble, […]

Continue Reading 15
Bagging Ensemble

A Gentle Introduction to Ensemble Learning Algorithms

Ensemble learning is a general meta approach to machine learning that seeks better predictive performance by combining the predictions from multiple models. Although there are a seemingly unlimited number of ensembles that you can develop for your predictive modeling problem, there are three methods that dominate the field of ensemble learning. So much so, that […]

Continue Reading 10
What Is Meta-Learning in Machine Learning?

What Is Meta-Learning in Machine Learning?

Meta-learning in machine learning refers to learning algorithms that learn from other learning algorithms. Most commonly, this means the use of machine learning algorithms that learn how to best combine the predictions from other machine learning algorithms in the field of ensemble learning. Nevertheless, meta-learning might also refer to the manual process of model selecting […]

Continue Reading 12
Blending Ensemble Machine Learning With Python

Blending Ensemble Machine Learning With Python

Blending is an ensemble machine learning algorithm. It is a colloquial name for stacked generalization or stacking ensemble where instead of fitting the meta-model on out-of-fold predictions made by the base model, it is fit on predictions made on a holdout dataset. Blending was used to describe stacking models that combined many hundreds of predictive […]

Continue Reading 26
Why Use Ensemble Learning

Why Use Ensemble Learning?

What are the Benefits of Ensemble Methods for Machine Learning? Ensembles are predictive models that combine predictions from two or more other models. Ensemble learning methods are popular and the go-to technique when the best performance on a predictive modeling project is the most important outcome. Nevertheless, they are not always the most appropriate technique […]

Continue Reading 14
Ensemble Learning Pattern Classification Using Ensemble Methods

6 Books on Ensemble Learning

Ensemble learning involves combining the predictions from multiple machine learning models. The effect can be both improved predictive performance and lower variance of the predictions made by the model. Ensemble methods are covered in most textbooks on machine learning; nevertheless, there are books dedicated to the topic. In this post, you will discover the top […]

Continue Reading 0
TPOT for Automated Machine Learning in Python

TPOT for Automated Machine Learning in Python

Automated Machine Learning (AutoML) refers to techniques for automatically discovering well-performing models for predictive modeling tasks with very little user involvement. TPOT is an open-source library for performing AutoML in Python. It makes use of the popular Scikit-Learn machine learning library for data transforms and machine learning algorithms and uses a Genetic Programming stochastic global […]

Continue Reading 37