Regression is a modeling task that involves predicting a numeric value given an input. Linear regression is the standard algorithm for regression that assumes a linear relationship between inputs and the target variable. An extension to linear regression invokes adding penalties to the loss function during training that encourages simpler models that have smaller coefficient […]

# Search results for "regression"

## How to Develop Ridge Regression Models in Python

Regression is a modeling task that involves predicting a numeric value given an input. Linear regression is the standard algorithm for regression that assumes a linear relationship between inputs and the target variable. An extension to linear regression invokes adding penalties to the loss function during training that encourages simpler models that have smaller coefficient […]

## How to Develop Elastic Net Regression Models in Python

Regression is a modeling task that involves predicting a numeric value given an input. Linear regression is the standard algorithm for regression that assumes a linear relationship between inputs and the target variable. An extension to linear regression involves adding penalties to the loss function during training that encourage simpler models that have smaller coefficient […]

## Robust Regression for Machine Learning in Python

Regression is a modeling task that involves predicting a numerical value given an input. Algorithms used for regression tasks are also referred to as “regression” algorithms, with the most widely known and perhaps most successful being linear regression. Linear regression fits a line or hyperplane that best describes the linear relationship between inputs and the […]

## How to Use AutoKeras for Classification and Regression

AutoML refers to techniques for automatically discovering the best-performing model for a given dataset. When applied to neural networks, this involves both discovering the model architecture and the hyperparameters used to train the model, generally referred to as neural architecture search. AutoKeras is an open-source library for performing AutoML for deep learning models. The search […]

## Deep Learning Models for Multi-Output Regression

Multi-output regression involves predicting two or more numerical variables. Unlike normal regression where a single value is predicted for each sample, multi-output regression requires specialized machine learning algorithms that support outputting multiple variables for each prediction. Deep learning neural networks are an example of an algorithm that natively supports multi-output regression problems. Neural network models […]

## How to Perform Feature Selection for Regression Data

Feature selection is the process of identifying and selecting a subset of input variables that are most relevant to the target variable. Perhaps the simplest case of feature selection is the case where there are numerical input variables and a numerical target for regression predictive modeling. This is because the strength of the relationship between […]

## How to Develop Multi-Output Regression Models with Python

Multioutput regression are regression problems that involve predicting two or more numerical values given an input example. An example might be to predict a coordinate given an input, e.g. predicting x and y values. Another example would be multi-step time series forecasting that involves predicting multiple future time series of a given variable. Many machine […]

## Cost-Sensitive Logistic Regression for Imbalanced Classification

Logistic regression does not support imbalanced classification directly. Instead, the training algorithm used to fit the logistic regression model must be modified to take the skewed distribution into account. This can be achieved by specifying a class weighting configuration that is used to influence the amount that logistic regression coefficients are updated during training. The […]

## How to Transform Target Variables for Regression in Python

Data preparation is a big part of applied machine learning. Correctly preparing your training data can mean the difference between mediocre and extraordinary results, even with very simple linear algorithms. Performing data preparation operations, such as scaling, is relatively straightforward for input variables and has been made routine in Python via the Pipeline scikit-learn class. […]