Search results for "encoder decoder attention"

Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

Gentle Introduction to Global Attention for Encoder-Decoder Recurrent Neural Networks

The encoder-decoder model provides a pattern for using recurrent neural networks to address challenging sequence-to-sequence prediction problems such as machine translation. Attention is an extension to the encoder-decoder model that improves the performance of the approach on longer sequences. Global attention is a simplification of attention that may be easier to implement in declarative deep […]

Continue Reading 12
Implementation Patterns for the Encoder-Decoder RNN Architecture with Attention

Implementation Patterns for the Encoder-Decoder RNN Architecture with Attention

The encoder-decoder architecture for recurrent neural networks is proving to be powerful on a host of sequence-to-sequence prediction problems in the field of natural language processing. Attention is a mechanism that addresses a limitation of the encoder-decoder architecture on long sequences, and that in general speeds up the learning and lifts the skill of the […]

Continue Reading 6
How to Develop an Encoder-Decoder Model with Attention for Sequence-to-Sequence Prediction in Keras

How to Develop an Encoder-Decoder Model with Attention in Keras

The encoder-decoder architecture for recurrent neural networks is proving to be powerful on a host of sequence-to-sequence prediction problems in the field of natural language processing such as machine translation and caption generation. Attention is a mechanism that addresses a limitation of the encoder-decoder architecture on long sequences, and that in general speeds up the […]

Continue Reading 343
Feeding Hidden State as Input to Decoder

How Does Attention Work in Encoder-Decoder Recurrent Neural Networks

Attention is a mechanism that was developed to improve the performance of the Encoder-Decoder RNN on machine translation. In this tutorial, you will discover the attention mechanism for the Encoder-Decoder model. After completing this tutorial, you will know: About the Encoder-Decoder model and attention mechanism for machine translation. How to implement the attention mechanism step-by-step. […]

Continue Reading 54
transformer_cover

The Transformer Attention Mechanism

Before the introduction of the Transformer model, the use of attention for neural machine translation was being implemented by RNN-based encoder-decoder architectures. The Transformer model revolutionized the implementation of attention by dispensing of recurrence and convolutions and, alternatively, relying solely on a self-attention mechanism.  We will first be focusing on the Transformer attention mechanism in […]

Continue Reading 9
luong_cover

The Luong Attention Mechanism

The Luong attention sought to introduce several improvements over the Bahdanau model for neural machine translation, particularly by introducing two new classes of attentional mechanisms: a global approach that attends to all source words, and a local approach that only attends to a selected subset of words in predicting the target sentence.  In this tutorial, […]

Continue Reading 6
bahdanau_cover

The Bahdanau Attention Mechanism

Conventional encoder-decoder architectures for machine translation encoded every source sentence into a fixed-length vector, irrespective of its length, from which the decoder would then generate a translation. This made it difficult for the neural network to cope with long sentences, essentially resulting in a performance bottleneck.  The Bahdanau attention was proposed to address the performance […]

Continue Reading 2
yahya-ehsan-L895sqROaGw-unsplash

Adding A Custom Attention Layer To Recurrent Neural Network In Keras

Deep learning networks have gained immense popularity in the past few years. The ‘attention mechanism’ is integrated with the deep learning networks to improve their performance. Adding attention component to the network has shown significant improvement in tasks such as machine translation, image recognition, text summarization and similar applications. This tutorial shows how to add […]

Continue Reading 39
tour_cover

A Tour of Attention-Based Architectures

As the popularity of attention in machine learning grows, so does the list of neural architectures that incorporate an attention mechanism. In this tutorial, you will discover the salient neural architectures that have been used in conjunction with attention. After completing this tutorial, you will gain a better understanding of how the attention mechanism is […]

Continue Reading 2
attention_mechanism_cover

The Attention Mechanism from Scratch

The attention mechanism was introduced to improve the performance of the encoder-decoder model for machine translation. The idea behind the attention mechanism was to permit the decoder to utilize the most relevant parts of the input sequence in a flexible manner, by a weighted combination of all of the encoded input vectors, with the most […]

Continue Reading 2