[New Book] Click to get Deep Learning with PyTorch!
Use the offer code 20offearlybird to get 20% off.

Search results for "embedding"

dotproduct_cover

How to Implement Scaled Dot-Product Attention from Scratch in TensorFlow and Keras

Having familiarized ourselves with the theory behind the Transformer model and its attention mechanism, we’ll start our journey of implementing a complete Transformer model by first seeing how to implement the scaled-dot product attention. The scaled dot-product attention is an integral part of the multi-head attention, which, in turn, is an important component of both […]

Continue Reading 3
transformer_cover

The Transformer Model

We have already familiarized ourselves with the concept of self-attention as implemented by the Transformer attention mechanism for neural machine translation. We will now be shifting our focus to the details of the Transformer architecture itself to discover how self-attention can be implemented without relying on the use of recurrence and convolutions. In this tutorial, […]

Continue Reading 19
attention_mechanism_cover

The Attention Mechanism from Scratch

The attention mechanism was introduced to improve the performance of the encoder-decoder model for machine translation. The idea behind the attention mechanism was to permit the decoder to utilize the most relevant parts of the input sequence in a flexible manner, by a weighted combination of all the encoded input vectors, with the most relevant […]

Continue Reading 23
attention_research_cover

A Bird’s Eye View of Research on Attention

Attention is a concept that is scientifically studied across multiple disciplines, including psychology, neuroscience, and, more recently, machine learning. While all disciplines may have produced their own definitions for attention, one core quality they can all agree on is that attention is a mechanism for making both biological and artificial neural systems more flexible.  In […]

Continue Reading 7
29539982252_f2d3e260be_k

A Gentle Introduction to Vector Space Models

Vector space models are to consider the relationship between data that are represented by vectors. It is popular in information retrieval systems but also useful for other purposes. Generally, this allows us to compare the similarity of two vectors from a geometric perspective. In this tutorial, we will see what is a vector space model […]

Continue Reading 1
Dimensionality Reduction Algorithms With Python

6 Dimensionality Reduction Algorithms With Python

Dimensionality reduction is an unsupervised learning technique. Nevertheless, it can be used as a data transform pre-processing step for machine learning algorithms on classification and regression predictive modeling datasets with supervised learning algorithms. There are many dimensionality reduction algorithms to choose from and no single best algorithm for all cases. Instead, it is a good […]

Continue Reading 17