SALE! Use code blackfriday for 40% off everything!
Hurry, sale ends soon! Click to see the full catalog.

Search results for "Time Series RNN"

Time Series Forecasting with the Long Short-Term Memory Network in Python

Time Series Forecasting with the Long Short-Term Memory Network in Python

The Long Short-Term Memory recurrent neural network has the promise of learning long sequences of observations. It seems a perfect match for time series forecasting, and in fact, it may be. In this tutorial, you will discover how to develop an LSTM forecast model for a one-step univariate time series forecasting problem. After completing this […]

Continue Reading 704
IMG_9527

An Introduction to Recurrent Neural Networks and the Math That Powers Them

When it comes to sequential or time series data, traditional feedforward networks cannot be used for learning and prediction. A mechanism is required to retain past or historical information to forecast future values. Recurrent neural networks, or RNNs for short, are a variant of the conventional feedforward artificial neural networks that can deal with sequential […]

Continue Reading 7
yahya-ehsan-L895sqROaGw-unsplash

Adding a Custom Attention Layer to a Recurrent Neural Network in Keras

Deep learning networks have gained immense popularity in the past few years. The “attention mechanism” is integrated with deep learning networks to improve their performance. Adding an attention component to the network has shown significant improvement in tasks such as machine translation, image recognition, text summarization, and similar applications. This tutorial shows how to add […]

Continue Reading 43
Learning Curves of Cross-Entropy Loss for a Deep Learning Model

TensorFlow 2 Tutorial: Get Started in Deep Learning with tf.keras

Predictive modeling with deep learning is a skill that modern developers need to know. TensorFlow is the premier open-source deep learning framework developed and maintained by Google. Although using TensorFlow directly can be challenging, the modern tf.keras API brings Keras’s simplicity and ease of use to the TensorFlow project. Using tf.keras allows you to design, […]

Continue Reading 133
Overview of Course Structure

Practical Deep Learning for Coders (Review)

Practical deep learning is a challenging subject in which to get started. It is often taught in a bottom-up manner, requiring that you first get familiar with linear algebra, calculus, and mathematical optimization before eventually learning the neural network techniques. This can take years, and most of the background theory will not help you to […]

Continue Reading 26
Line Plots of Accuracy on Train and Test Datasets While Training With Dropout Regularization

How to Reduce Overfitting With Dropout Regularization in Keras

Dropout regularization is a computationally cheap way to regularize a deep neural network. Dropout works by probabilistically removing, or “dropping out,” inputs to a layer, which may be input variables in the data sample or activations from a previous layer. It has the effect of simulating a large number of networks with very different network […]

Continue Reading 19
Depiction of CNN Model for Accelerompter Data

Deep Learning Models for Human Activity Recognition

Human activity recognition, or HAR, is a challenging time series classification task. It involves predicting the movement of a person based on sensor data and traditionally involves deep domain expertise and methods from signal processing to correctly engineer features from the raw data in order to fit a machine learning model. Recently, deep learning methods […]

Continue Reading 76
Line plots of x, y, z and class for the second loaded subject.

A Gentle Introduction to a Standard Human Activity Recognition Problem

Human activity recognition is the problem of classifying sequences of accelerometer data recorded by specialized harnesses or smart phones into known well-defined movements. It is a challenging problem given the large number of observations produced each second, the temporal nature of the observations, and the lack of a clear way to relate accelerometer data to […]

Continue Reading 28