Search results for "Machine Learning"

Scikit-Optimize for Hyperparameter Tuning in Machine Learning

Scikit-Optimize for Hyperparameter Tuning in Machine Learning

Hyperparameter optimization refers to performing a search in order to discover the set of specific model configuration arguments that result in the best performance of the model on a specific dataset. There are many ways to perform hyperparameter optimization, although modern methods, such as Bayesian Optimization, are fast and effective. The Scikit-Optimize library is an […]

Continue Reading 22

What are X and y in machine learning?

Machine learning algorithms learn how to map examples of input to examples of output. This is useful because in the future we can give new examples of input and the model can predict the output. Therefore, when we train a model, we must separate our data (rows) into input and output elements (columns) Input is referred […]

Continue Reading 0
Probability Decision Surface for Logistic Regression on a Binary Classification Task

Plot a Decision Surface for Machine Learning Algorithms in Python

Classification algorithms learn how to assign class labels to examples, although their decisions can appear opaque. A popular diagnostic for understanding the decisions made by a classification algorithm is the decision surface. This is a plot that shows how a fit machine learning algorithm predicts a coarse grid across the input feature space. A decision […]

Continue Reading 10
Nested Cross-Validation for Machine Learning with Python

Nested Cross-Validation for Machine Learning with Python

The k-fold cross-validation procedure is used to estimate the performance of machine learning models when making predictions on data not used during training. This procedure can be used both when optimizing the hyperparameters of a model on a dataset, and when comparing and selecting a model for the dataset. When the same cross-validation procedure and […]

Continue Reading 53
Histogram of Each Variable in the Diabetes Classification Dataset

How to Selectively Scale Numerical Input Variables for Machine Learning

Many machine learning models perform better when input variables are carefully transformed or scaled prior to modeling. It is convenient, and therefore common, to apply the same data transforms, such as standardization and normalization, equally to all input variables. This can achieve good results on many problems. Nevertheless, better results may be achieved by carefully […]

Continue Reading 10