Search results for "Machine Learning"

Feeding Hidden State as Input to Decoder

How Does Attention Work in Encoder-Decoder Recurrent Neural Networks

Attention is a mechanism that was developed to improve the performance of the Encoder-Decoder RNN on machine translation. In this tutorial, you will discover the attention mechanism for the Encoder-Decoder model. After completing this tutorial, you will know: About the Encoder-Decoder model and attention mechanism for machine translation. How to implement the attention mechanism step-by-step. […]

Continue Reading 33
What Are Word Embeddings for Text?

What Are Word Embeddings for Text?

Word embeddings are a type of word representation that allows words with similar meaning to have a similar representation. They are a distributed representation for text that is perhaps one of the key breakthroughs for the impressive performance of deep learning methods on challenging natural language processing problems. In this post, you will discover the […]

Continue Reading 79
Example of LSTMs used in Automatic Handwriting Generation

Gentle Introduction to Generative Long Short-Term Memory Networks

The Long Short-Term Memory recurrent neural network was developed for sequence prediction. In addition to sequence prediction problems. LSTMs can also be used as a generative model In this post, you will discover how LSTMs can be used as generative models. After completing this post, you will know: About generative models, with a focus on […]

Continue Reading 0
Encoder-Decoder Long Short-Term Memory Networks

Encoder-Decoder Long Short-Term Memory Networks

Gentle introduction to the Encoder-Decoder LSTMs for sequence-to-sequence prediction with example Python code. The Encoder-Decoder LSTM is a recurrent neural network designed to address sequence-to-sequence problems, sometimes called seq2seq. Sequence-to-sequence prediction problems are challenging because the number of items in the input and output sequences can vary. For example, text translation and learning to execute […]

Continue Reading 78
5 Examples of Simple Sequence Prediction Problems for Learning LSTM Recurrent Neural Networks

5 Examples of Simple Sequence Prediction Problems for LSTMs

Sequence prediction is different from traditional classification and regression problems. It requires that you take the order of observations into account and that you use models like Long Short-Term Memory (LSTM) recurrent neural networks that have memory and that can learn any temporal dependence between observations. It is critical to apply LSTMs to learn how […]

Continue Reading 28