Search results for "Machine Learning"

What Is argmax in Machine Learning?

What Is Argmax in Machine Learning?

Argmax is a mathematical function that you may encounter in applied machine learning. For example, you may see “argmax” or “arg max” used in a research paper used to describe an algorithm. You may also be instructed to use the argmax function in your algorithm implementation. This may be the first time that you encounter […]

Continue Reading 4
Distance Measures for Machine Learning

4 Distance Measures for Machine Learning

Distance measures play an important role in machine learning. They provide the foundation for many popular and effective machine learning algorithms like k-nearest neighbors for supervised learning and k-means clustering for unsupervised learning. Different distance measures must be chosen and used depending on the types of the data. As such, it is important to know […]

Continue Reading 10
Basic Data Cleaning You Must Perform in Machine Learning

Basic Data Cleaning for Machine Learning (That You Must Perform)

Data cleaning is a critically important step in any machine learning project. In tabular data, there are many different statistical analysis and data visualization techniques you can use to explore your data in order to identify data cleaning operations you may want to perform. Before jumping to the sophisticated methods, there are some very basic […]

Continue Reading 12
A Gentle Introduction to the Fbeta-Measure for Machine Learning

A Gentle Introduction to the Fbeta-Measure for Machine Learning

Fbeta-measure is a configurable single-score metric for evaluating a binary classification model based on the predictions made for the positive class. The Fbeta-measure is calculated using precision and recall. Precision is a metric that calculates the percentage of correct predictions for the positive class. Recall calculates the percentage of correct predictions for the positive class […]

Continue Reading 4
Standard Machine Learning Datasets for Imbalanced Classification

Standard Machine Learning Datasets for Imbalanced Classification

An imbalanced classification problem is a problem that involves predicting a class label where the distribution of class labels in the training dataset is skewed. Many real-world classification problems have an imbalanced class distribution, therefore it is important for machine learning practitioners to get familiar with working with these types of problems. In this tutorial, […]

Continue Reading 14
Results for Standard Classification and Regression Machine Learning Datasets

Results for Standard Classification and Regression Machine Learning Datasets

It is important that beginner machine learning practitioners practice on small real-world datasets. So-called standard machine learning datasets contain actual observations, fit into memory, and are well studied and well understood. As such, they can be used by beginner practitioners to quickly test, explore, and practice data preparation and modeling techniques. A practitioner can confirm […]

Continue Reading 6