SALE! Use code blackfriday for 40% off everything!
Hurry, sale ends soon! Click to see the full catalog.

# Search results for "Logistic Regression"

## Building a Logistic Regression Classifier in PyTorch

Logistic regression is a type of regression that predicts the probability of an event. It is used for classification problems and has many applications in the fields of machine learning, artificial intelligence, and data mining. The formula of logistic regression is to apply a sigmoid function to the output of a linear function. This article […]

## Training Logistic Regression with Cross-Entropy Loss in PyTorch

In the previous session of our PyTorch series, we demonstrated how badly initialized weights can impact the accuracy of a classification model when mean square error (MSE) loss is used. We noticed that the model didn’t converge during training and its accuracy was also significantly reduced. In the following, you will see what happens if […]

## Making Predictions with Logistic Regression in PyTorch

Logistic regression is a statistical technique for modeling the probability of an event. It is often used in machine learning for making predictions. We apply logistic regression when a categorical outcome needs to be predicted. In PyTorch, the construction of logistic regression is similar to that of linear regression. They both applied to linear inputs. […]

## Multinomial Logistic Regression With Python

Multinomial logistic regression is an extension of logistic regression that adds native support for multi-class classification problems. Logistic regression, by default, is limited to two-class classification problems. Some extensions like one-vs-rest can allow logistic regression to be used for multi-class classification problems, although they require that the classification problem first be transformed into multiple binary […]

## Cost-Sensitive Logistic Regression for Imbalanced Classification

Logistic regression does not support imbalanced classification directly. Instead, the training algorithm used to fit the logistic regression model must be modified to take the skewed distribution into account. This can be achieved by specifying a class weighting configuration that is used to influence the amount that logistic regression coefficients are updated during training. The […]

## A Gentle Introduction to Logistic Regression With Maximum Likelihood Estimation

Logistic regression is a model for binary classification predictive modeling. The parameters of a logistic regression model can be estimated by the probabilistic framework called maximum likelihood estimation. Under this framework, a probability distribution for the target variable (class label) must be assumed and then a likelihood function defined that calculates the probability of observing […]

## How To Implement Logistic Regression From Scratch in Python

Logistic regression is the go-to linear classification algorithm for two-class problems. It is easy to implement, easy to understand and gets great results on a wide variety of problems, even when the expectations the method has of your data are violated. In this tutorial, you will discover how to implement logistic regression with stochastic gradient […]

## Logistic Regression Tutorial for Machine Learning

Logistic regression is one of the most popular machine learning algorithms for binary classification. This is because it is a simple algorithm that performs very well on a wide range of problems. In this post you are going to discover the logistic regression algorithm for binary classification, step-by-step. After reading this post you will know: […]

## Logistic Regression for Machine Learning

Logistic regression is another technique borrowed by machine learning from the field of statistics. It is the go-to method for binary classification problems (problems with two class values). In this post you will discover the logistic regression algorithm for machine learning. After reading this post you will know: The many names and terms used when […]

## How to Use Optimization Algorithms to Manually Fit Regression Models

Regression models are fit on training data using linear regression and local search optimization algorithms. Models like linear regression and logistic regression are trained by least squares optimization, and this is the most efficient approach to finding coefficients that minimize error for these models. Nevertheless, it is possible to use alternate optimization algorithms to fit […]